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ABSTRACT: 

In order to study the response of benthic foraminifera, a closely spaced samples of a 9.65m long sediment core which was retrieved from 1230m water 
depth off Goa, were analysed both qualitatively and quantitatively. The down-core abundance pattern of cassidulinids shows millennial-scale variation almost 
paralleling the organic-carbon-concentration (%Corg) sediment record. The cassidulinid population appears to be controlled by both bottom oxygen condition 
and primary productivity. This study deciphers that the intervals during 15 – 17 kyr BP, 23 – 24 kyr BP, 28 – 29.5 kyr BP, 38 – 39 kyr BP, 45 – 46 kyr BP  and 
60 – 61 kyr BP were the periods of cassidulinid minima related to the weak Oxygen Minimum Zone (OMZ) intensity and low surface primary productivity in 
the eastern Arabian Sea. These events of abundance minima of cassidulinds correspond with the time equivalents of north Atlantic Heinrich Events.
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INTRODUCTION 

The Arabian Sea is characterised by a strong OMZ 
attributed to high biological productivity and poor ventilation 
of thermocline (Wyrtki, 1973). Previous studies reveal past 
changes in productivity, ventilation of intermediate waters and 
depths of local overturning resulted in a significant variation in 
the OMZ intensity (Altabet et al., 1995; Schultz et al., 1998; 
Reichart et al., 1998; 2002; Schulte et al., 1999 and Singh et 
al., 2006). Benthic foraminifera are reliable indicators of OMZ 
intensity, as many of the taxa are considered to be sensitive to 
the changes in both the dissolved oxygen concentrations and 
Corg flux together determining the strength of the OMZ (Kaiho, 
1994; Cannariato and Kennett, 1999). The benthic environment 
within the OMZ, as witnessed in the Arabian Sea is typified by 
low oxygen content and high organic matter content, which 
is reflected in associated benthic foraminiferal assemblages 
(Hermelin, 1992 and Hermelin and Schmmild, 1990). The 
examined core-site is situated near base of the present OMZ 
(1230 m). Thus, the temporal variation in benthic foraminiferal 
assemblages in the core can be used to interpret fluctuations in 
the OMZ strength of central part of the western Indian margin 
during the late Quaternary. Palaeoenvironmental interpretations 
were derived from qualitative and quantitative analyses of 
benthic foraminiferal assemblages of closely spaced samples of 
dated sediment core (MD76-131) from the central part of the 
upper continental slope of India.

This paper focuses on 70 kyr record of cassidulinids along 
with the brief note on their taxonomy and known ecology. Modern 
ecological data revealed that cassidulinids are very sensitive to 
the bottom water oxygen conditions and organic carbon content 
(Corliss and Chen, 1988; Kaiho, 1994; Kaiho, 1999). In the 
examined core, cassidulinids show remarkable robust positive 
correlation with the %Corg content record from the same core 
(Singh et al., 2011). Hence, with the aid of geochemical tracer 
(%Corg), the present study endeavours to know the response of 
cassidulinids to the OMZ intensity fluctuations for the last 70 
kyr in the eastern Arabian Sea.  

OCEANOGRAPHIC SETTING

Surface circulation and hydrography of the Arabian Sea is 
mainly controlled by the seasonal reversal of monsoon driven 
winds. During the summer monsoon, the West Indian Coastal 
Current (WICC) flows southwards and joins eastward flowing 
Southwest Monsoon Current (SMC). In winter monsoon season, 
the surface water currents reverse, flowing anti-clockwise. 
The WICC also reverses and the Northeast Monsoon Current 
(NMC) transports water from the Bay of Bengal into the eastern 
Arabian Sea. During summer monsoon season, a low salinity 
plume in the offshore region south of 20º N is created by the 
excess of precipitation over evaporation and heavy runoff from 
the Western Ghats (Naqvi et al., 2003). During winter monsoon, 
the WICC reverses and the Northeast Monsoon Current (NMC) 
transports waters from the Bay of Bengal (BOB) into the eastern 
Arabian Sea. The influence of BOB low salinity water in the 
eastern Arabian Sea is most prevalent up to 13º N (Sarma, 2002). 
The strong north-easterly winds in winter causes upwelling 
(though weak) and vertical mixing offshore India north of 15º 
N (Bauer et al., 1991; Madhupratap et al., 1996). Additionally 
in areas offshore India and Pakistan, a deep mixing across the 
thermocline results in high surface productivity (Madhupratap et 
al., 1996). High biological productivity results in severe oxygen 
depletion in intermediate waters at 150-1250 m water depth 
(Olson et. al., 1993; Wyrtki, 1973).

MATERIAL AND METHODS

A 9.65 m long piston core (MD76-131) was raised from 
central part of the western Indian margin at 1230 m water depth 
(off Goa: Lat.-15º 31.8’ N; Long.-72º 34.1’ E) by    R / V Marion 
Dufresne in 1976 (Figure 1). The core site is situated well 
above the Calcite Compensation Depth (c.2400 m, Belyaeva 
and Burmistrova, 1984). The sediment core in general is 
characterised by dark coloured indistinctly laminated sediments 
with intermittently light coloured homogenous facies. The 
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narrow homogenous intervals are lithologically in sharp contact 
with the laminated strata. The core provides an uninterrupted 
sedimentary sequence (commonly hemi – pelagic mud), free 
of turbiditic (or mass flow) deposition and reworking. The core 
was sampled at 1 to 2cm intervals. Samples ranging from 2 to 
4cm intervals were used for this study. In total 332 samples 
were analysed for various micropaleontological parameters. 
The examined core MD 76–131 spans 5–70 ka and the age 
model is based on AMS 14C ages in the upper 360 cm (roughly 
40 ka) and for intervals beyond the radiocarbon dating window 
chronostratigraphic control is achieved by tuning δ15N record 
with (GISP2) [Ivanochko et al., 2005].

For separation of foraminifers’ tests, sediment samples were 
processed following the conventional micropaleontological 
techniques. About 5g of dried sediment of each sample was 
soaked in 5% Hydrogen Peroxide solution for twelve hours 
and boiled a little before wet screening. Samples were washed 
through wet sieving over a 63µm screen. Dry residue coarser 
than 63µm was sieved again over a 125µm screen. Following 
previous benthic foraminiferal studies in the Indo – Pacific 
Ocean (Herguera and Berger, 1991; Miao and Thunell,  1996; 
Naidu and Malmgren, 1995; Rathburn and Miao, 1995; den 
Dulk et al., 1998, 2000; Almogi- Labin et al., 2000), the coarse 
fraction (>125μm) was used in the present study. The specimens 
were identified and counted under a stereozoom binocular 
microscope (Wild M3Z). Scanning electron micrographs 
of foraminiferal species were obtained at SEM-EDX, Lab., 
NCEGR, Kolkata, GSI.  The species recovered are lodged in the 

Micropaleontology laboratory, Department of Geology, Banaras 
Hindu University, Varanasi. Systematic classification of benthic 
foraminifera is based on Loeblich and Tappan (1992) and Sen 
Gupta (2002), with morphological criteria taken from Loeblich 
and Tappan (1987).

RESULTS

The benthic foraminiferal assemblages of core MD76-
131 are mainly composed of buliminids, cassidulinids, 
uvigerinids, cibicidids, miliolids and fursenkoinids and other 
taxa (in decreasing order of relative abundance). The percentage 
abundance of total cassidulinids varies between 0.8% - 40%.  
Species of the cassidulinids population are Cassidulina carinata 
Silvestri, C. crassa d’Orbigny, Globocassidulina oblonga 
(Reuss) and, G. subglobosa (Brady).  Systematic descriptions of 
all four species are provided and illustrated by scanning electron 
micrographs in figure 3. Remarks on observed morphological 
features and known ecology are briefly presented. 

SYSTEMATIC PALAEONTOLOGY

 Class Foraminifera D’Orbigny, 1826
 Order Buliminida Fursenko, 1958
 Superfamily Cassidulinacea d’Orbigny, 1839
 Family Cassidulinidae  d’Orbigny, 1839
 Subfamily Cassidulininae  d’Orbigny, 1839
 Genus Cassidulina d’Orbigny, 1826

 (Type species Cassidulina laevigata d’Orbigny, 1826)

Fig. 1. Map showing the location of Core MD 76-131 off Goa (15º31.8’N, 72º34.1’E) and areas predominantly reflecting summer and winter monsoon-driven 
upwelling are hatched (Singh et al., 2011). Thick line with arrowhead shows direction of atmospheric circulation during the summer and winter seasons.
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Cassidulina carinata Silvestri 
(Figs 3. 1a-c.)

Cassidulina laevigata d’Orbigny var. carinata Silvesri ; 1896, v. 12, p. 
104, pl. 2, figs. 10a-c.

Cassidulina carinata  Barker, 1960, no. 9, p. 110,   pl. 54, figs. 2-3.- 
Eade, 1967, v. 1, no. 4, p. 429, figs. 2, no. 5-9. - Srinivasan and Azmi, 1976, 
p. 346, list. -  Wang et al., 1985, p. 336, pl. 4, fig. 17.

Cassidulina carinata Silvestri; Rodrigues et. al., 1980,  p. 
54, pl. 5,figs. 3,6,9. - Van Marle, 1986, p. 141, pl. 2, figs. 4-5.

Remarks: Recorded specimens of C. carinata resembles 
most closely with forms described as C. delicata Cushman from 
the late Tertiary of East Borneo (Le Roy, 1941a), C. cushmani 
from late Tertiary of Java (Boomgaart, 1949), C. laevigata d’ 
Orbigny from the Late Miocene of New Guinea (Belford, 1966) 
and C. neocarinata Thalmann from Tertiary of New Zealand 
(Hornibrook, 1961). Phleger et al. (1953) stated that C. carinata 
might be differentiated from C. neocarinata in having a broader 
apertural face and tooth, and a less compresssed, more coarsely 
perforate test. C. carinata differs from the typical C. laevigata 

Fig. 2. Down core variation patterns of relative abundance of organic carbon concentration, Cassidulina carinata, Globocassidulina  subglobosa, total 
Cassidulinids and %Corg (from Singh et al., 2011)  for core  MD 76-131.
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d’ Orbigny by its characteristic peripheral keel. According to 
Hageman (1979) C. carinata is an open marine mud-dweller. 
Guichard (1997) reported this as a shallow infaunal species. 
Gupta and Thomas (1999) suggested its association with high 
nutrient condition. 

This species in the present day ocean is a phytodetritus 
feeder (Fontanier et al. 2003) and known from well-ventilated 
areas (Hayward et al., 2002). C. carinata is found to be one of 
the predominate taxa of the foraminiferal population in core 
MD76-131, with its maximum abundance reaching up to 30%. 

Cassidulina crassa d’Orbigny 
(Fig. 3.2)

Cassidulina crassa d’Orbigny, 1839b,  p. 56, pl. 7, figs. 18-20. -Brady, 
1884, no. 9, p. 429, pl. 54, figs. 4-5. -Cushman, 1925, p. 54, pl. 8, figs. 37-
39. - Barker, 1960, no. 9,  p. 110, pl. 54, figs. 4-5. - Belford, 1966, no. 79, p. 
151, pl. 26, figs. 5-9. - Boltovskoy, 1976,v.26, p.154, pl. 2, fig. 19.

Remarks : Belford (1966) observed a trifid aperture in his 
specimens of C. crassa, and therefore placed them in the genus 
Globocassidulina. In our specimens, though the aperture is 
often triangular in the central part, it is not trifid, but comparable 
with the Cassidulina type of aperture. Therefore, this species 
is retained in the genus Cassidulina. This is known to prefer 
shallow infaunal microhabitat (de Stigter et al., 1998). den Dulk 
et al. (2000) recorded this taxon in sediment cores within the 
OMZ of northern Arabian Sea. In the examined core it shows 
extremely rare occurrence.
 Genus Globocassidulina  Voloshinova 1960
 Type species Cassidulina globosa Hantken, 1876

Globocassidulina oblonga (Reuss) 
(Fig 3.7)

Cassidulina oblonga Reuss; 1850, v. 1, p. 376, pl. 18, figs. 5, 6. - 
Boltovskoy,  1978a,  v. 26,  p.152,  pl. II, fig.31.

Globocassidulina oblonga; Belford, 1966, no. 79, p. 150, pl. 26, figs. 
1-4, text-figs. 17(17, 18). - Srinivasan and Azmi, 1976, p. 348, list.

Globocassidulina oblonga (Reuss); Van Marle, 1986, p. 
143, pl. 5, fig. 21.

Remarks: In most of our specimens, the last chamber is 
elongated. Brady (1884) and Marks (1951) based on observed 
variation in external features, placed oblonga in the synonymy 
of C. crassa d’ Orbigny. However, Cushman (1925) and Nørvang 
(1958) considered the two species as valid ones. Globocassidulina 
oblonga has been reported from abysso-bathyal depths in Indian 
Ocean (Gupta, 1994; Rai and Srinivasan, 1994; Rai and Singh, 
2004). In the present investigation it shows sporadic occurrence, 
but at times its abundance increases with maximum about 8%.

Globocassidulina subglobosa (Brady) 
(Fig 3.8)

Cassidulina subglobosa; Brady, 1884, no. 9, p. 430, pl. 54, figs. 17a-
c.- Barker , 1960 no. 9, p. 112, pl. 54, figs. 17a-c. - Boltovskoy,  1978a,  v. 
26,  p.155,  pl. II,  fig. 34.

Globocassidulina subglobosa; Belford, 1966, no. 79, p. 149, pl. 25, 
figs.11-16, text-figs. 17 : 1-6, text-figs. 18 : 1-4. - Srinivasan and Azmi, 1976, 
p. 348, list.- Corliss,1979a, v. 25, no. 1, p. 8, pl. 3, figs. 12-13.

Globocassidulina subglobosa (Brady); Kurihara and Kennett, 1981, 
In: Kennett et al. (Eds.), Int. Repts of DSDP 90: 2, p. 1073, pl. 5, figs.4-8. - 
Boresma, 1984b,   p. 1286, pl. 8, fig. 5.

Remarks: Examined species of G. subglobosa is 
characterised by enrolled biserial test and elongate slit-like 

aperture extending up rather across the apertural face.    
G. subglobosa is a cosmopolitan species distributed in 

different water masses of wide bathymetric range and associated 
with warm AABW having temperature between 0.6ºC to 0.8ºC 
in the southwest India Ocean (Corliss, 1979b, 1983). This 
species is an indicator for NADW in the North Atlantic (Streeter, 
1973; Lohmann, 1978; Schnitker, 1979; Hermelin, 1986). 
The predominance of this species in the MOW (Meditrranean 
Outflow Water) has also been recorded by Murray (1991). G. 
subglobosa is one of the most characteristic species of the Indian 
Deep Water (IDW) which is known to be largely of the Atlantic 
origin (Lohman, 1978; Corliss, 1979a, 1979b, 1983; Peterson, 
1984). G. subglobosa is a phytodetritus feeder (Gooday, 1994) 
and an infaunal taxon (Corliss, 1985, 1991; Corliss and Chen, 
1988). G. subglobosa is considered to thrive in sediment with 
high organic carbon content and can tolerate low dissolved 
oxygen concentration (Miller & Lohmann, 1982; Corliss and 
Chen, 1988). In the South China Sea, the Sulu Sea and the 
northern Arabian Sea G. subglobosa is reported within the OMZ 
where the organic carbon content of the sediment is highest and 
the oxygen penetration depth is shallowest (Miao and Thunell, 
1993; den Dulk et al., 2000). However, in the   Pacific Ocean, G. 
subglobosa is considered to be related to the environment with 
low surface productivity and thereby low flux of organic matter 
to the sea floor (Loubere and Banonis, 1987; Burke et al., 1993). 
G. subglobosa is an important species of benthic assemblages of 
the core MD76-131 and its abundance increases with maximum 
of about 13.6%.
Down – core variation pattern

Temporal variation pattern of total cassidulinids shows 
significant fluctuation on millennial to centennial scales with 
prominent increase in abundance during   18 –  22   kyr BP, 27 
– 28   kyr BP, 44 –  45 kyr BP, 47 –  48 kyr BP and 67 –  68 kyr 
BP.  The Holocene Period is characterized by the low abundance 
except at ~ 6 kyr BP with a moderate increase.  A considerable 
decrease in abundance is observed between 15 – 17 kyr BP, 23 – 
24 kyr BP, 28 – 29.5 kyr BP, 38 – 39 kyr BP, 45.5 – 46.5 kyr BP  
and 60 – 61 kyr BP (Figure 2) 

DISCUSSION  

Cassidulinids are characterized by the lenticular to flattened 
and ovoid test, prefer infaunal habitat, moderate to high organic 
carbon content and tolerate low oxygen environment (Corliss 
and Chen, 1988; Corliss and Fois, 1990; Kaiho, 1999). Out 
of four species, C. carinata and G. subglobosa are the major 
constituents of the cassidulinid population in the examined core 
samples. Abundance profile of C. carinata, a shallow infauna 
(Guichard, 1997), associated with high nutrient condition (Gupta 
and Thomas, 1999), follows the pattern of the total cassidulinid 
down-core pattern.  The abundance record of G. subglobosa also 
follows the pattern of cassidulinid profile at least between 5 to 
40 kyr BP and the abundance has been low from 40 to 70 kyr 
BP (lower part of the Marine Isotope Stage 3). Large specimens    
(> 350µm) of Globocassidulina are considered to be related to 
the oxic environment (Kaiho, 1994). Probably, the water mass 
characteristics might have influenced the abundance pattern of 
G. subglobosa in the lower part of the core.

The examined core comes from the base of the OMZ, and 
thus very sensitive to the changes in their intensity. OMZ can be 
formed  either by lethargic circulation of oxygen-poor source 
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waters or by high primary production by photosynthesis or 
upwelling, in the latter case the decay of sinking organic matter 
consumes such a great amount of oxygen that the intermediate 
water depths contain substantially less oxygen than water above 
or below.  Thus, the intensity of the OMZ is closely coupled 
with the primary productivity induced organic carbon flux. 
There are various factors for the organic carbon enrichment 
in the sea floor sediment such as production of organic carbon 
and its preservation.  Paropkari et al. (1992) concluded that the 
intensity of OMZ is primarily controlled the preservation of 
organic carbon in slope of Oman and the western Indian margin. 
In the examined core, the total cassidulinid shows almost 
paralleling the Corg content record. The abundance pattern of 
cassidulinids indicates a prominent increase during 18–22   
kyr BP, 27–28   kyr BP, 44 – 45 kyr BP, 47 – 48 kyr BP and 
67– 68 kyr BP.  These time intervals of abundance maxima of 
cassidulinids closely correspond to the maxima in %Corg content. 
During the Holocene Period, the cassidulinid abundance is low 
except its moderate value at 6 kyr BP. A prominent and rapid 
decline in abundance of cassidulinids is recorded between 10 

and 12, between 15 and 17 kyr BP, between 28 and 29.5 kyr BP, 
between 38 and 39 kyr BP, between 45.5 and 46.5 and between 
60 and 61; and these intervals correspond to the minimum value 
of %Corg content.  The down core variation patterns show the 
predominance of cassidulinids is an indicative of a strong OMZ, 
whereas decreased abundance marks a weaker OMZ.

 Studies on the Corg distribution in the surficial sediments 
along the western continental margin suggested that primary 
productivity is the main factor controlling the content of the 
organic carbon in sediments (Calvert et al., 1995).  Furthermore, 
using different proxies of productivity, Singh et al. (2011) 
suggested %Corg as a robust geochemical tracer of primary 
productivity in the western Indian continental slope. Therefore 
the construction of %Corg is used in this study area as an indicator 
of surface primary productivity.  Study shows that the abundance 
of casssidulinid group is strongly dependent on OMZ intensity 
which is controlled by the sea surface productivity. 

Several high resolution studies of the late Quaternary 
records suggest that the monsoonal circulation, productivity and 
the OMZ intensity are closely related to each other and related 

Fig. 3.1. Cassidulina carinata  Silvestri 1a. Apertural view; X 190, 1b. Side view; X 220, 1c. Backside view; X150; 2.  Cassidulina crassa d’Orbigny; 
Apertural view, X330; 3.  Globocassidulina oblonga (Ruess); X 258; 4. Globocassidulina subglobosa Brady; X319
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to the global climate events (Behl and Kennett, 1996; Reichart 
et al., 1998, Schulz et al., 1998; Von Rad et al., 1999; Singh 
et al., 2006). The cassidulinids abundance fluctuations from the 
examined core-site indicate that the OMZ in the eastern Arabian 
Sea was weakest or even disappeared at three times in the last 
70 kyr BP and these time intervals appear to correspond to the 
north Atlantic cold events - the Younger Dryas, the Heinrich 1 
and Heinrich 6. The intensity of the OMZ during other north 
Atlantic cold events (H2, H3, H4 and H5) and stadials of the 
D-O cycles also appears to have been weaker, but not that of the 
large magnitude. During the peak glacial time (17-22.5 kyr BP) 
the OMZ was well developed. The faunal data further reveal that 
the OMZ intensity was stronger in the warm interstadial periods. 
Thus, it is very well reflected from the faunal record that the 
OMZ strength in the eastern Arabian Sea has varied in the past 
on millennial scale. The variability pattern of the OMZ intensity 
inferred in this investigation has a close similarity with the 
pattern of past changes in OMZ conditions in the northeastern 
Arabian Sea (Von Rad et al., 1999). 

 In the recent study, it has been found that in the Eastern 
Arabian Sea, %Corg  content in the sediment is mainly controlled 
by  winter monsoon-driven primary productivity (Singh et al., 
2011). Consequently, the predominance of the cassidulinids in 
examined benthic assemblages is related to the winter monsoon- 
driven high surface primary productivity and relatively low 
oxygen conditions. The  minor differences in down-core 
variation patterns among the cassidulinid taxa suggest that 
although cassidulinid population is mainly controlled by Corg 
content and OMZ intensity, the distribution pattern of individual 
taxa of cassidulinid is controlled by the combination of factors 
mainly bottom oxygen concentration, organic carbon flux, 
salinity, temperature, competition and predation.

CONCLUSIONS

The high-resolution abundance record of cassidulinids for 
the last 70 kyr BP retrieved from 9.65 m long sediment core off 
Goa shows marked fluctuating trends at millennial scale. In the 
present study, a faunal and geochemical proxy comparison shows 
a robust positive correlation between cassidulinids and %Corg 
content. Study reveals that in the examined core site cassidulinid 
population is controlled by organic carbon content and tolerant 
to the low oxygen environment. The organic carbon enrichment 
in the sediment is controlled by winter monsoon induced 
primary productivity and preservation under strong OMZ. The 
time intervals between 15 – 17 kyr BP, 23 – 24 kyr BP, 28 – 29.5 
kyr BP, 38 – 39 kyr BP, 45.5 – 46.5 kyr BP  and 60 – 61 kyr 
BP were the period of low abundance of cassidulininds which 
correspond to the  weak OMZ. Present study also reveals that 
the strength of the OMZ of the eastern Arabian Sea oscillated in 
concert with the northern Hemisphere climate events (H1-H6).
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